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Highlights

Key product: block-based estimates of numerous 2000 population and housing characteristics
for 2010 census units.

Data cover entire U.S. at 10 geographic levels, including block groups, tracts, places, and ZIP
Code Tabulation Areas.

Even using a block basis, uncertainty in 2000 counts for 2010 units is pervasive and occasionally
large.

18 interpolation models—employing water, roads, imperviousness, and/or 2010 block data—are
defined and assessed.

The final model, a hybrid of dasymetric and density weighting approaches, improves

substantially on other tested models.



Hybrid Areal Interpolation of Census Counts from 2000
Blocks to 2010 Geographies

Abstract

To measure population changes in areas where census unit boundaries do not align across time, a
common approach is to interpolate data from one census’s units to another’s. This article presents a
broad assessment of areal interpolation models for estimating counts of 2000 characteristics in 2010
census units throughout the United States. We interpolate from 2000 census block data using 4 types of
ancillary data to guide interpolation: 2010 block densities, imperviousness data, road buffers, and water
body polygons. We test 8 binary dasymetric (BD) models and 8 target-density weighting (TDW) models,
each using a unique combination of the 4 ancillary data types, and derive 2 hybrid models that blend the
best-performing BD and TDW models. The most accurate model is a hybrid that generally gives high
weight to TDW (allocating 2000 data in proportion to 2010 densities) but gives increasing weight to a BD
model (allocating data uniformly within developed land near roads) in proportion to the estimated
2000-2010 rate of change within each block. Although for most 2010 census units, this hybrid model’s
estimates differ little from the simplest model’s estimates, there are still many areas where the
estimates differ considerably. Estimates from the final model, along with lower and upper bounds for
each estimate, are publicly available for over 1,000 population and housing characteristics at 10

geographic levels via the National Historical Geographic Information System (NHGIS — http://nhgis.org).

Keywords: Areal interpolation; Census geography; Spatio-temporal analysis; Population estimation

1. Introduction
Summary data from national censuses are a vital resource for studies of local and regional trends
in population or housing characteristics, but measuring changes in summary data is frequently

complicated by boundary changes in census geographic units (Martin, Dorling, & Mitchell, 2002;



Gregory, 2002; Schroeder, 2007). When, for example, a city annexes land or a census tract boundary is
revised, census agencies typically publish new data only for the updated units. In such areas,
determining exactly how characteristics changed within a fixed extent is not generally feasible.

One may, however, estimate the characteristics of fixed extents by applying some form of areal
interpolation. “Areal interpolation” takes aggregate data describing a feature’s distribution over a set of
source zones and transforms the data to produce estimates of how the same feature is distributed over
a set of target zones (Goodchild & Lam, 1980). To study changes in census summary data, we may
interpolate data from one census’s geographic units (the source zones) to another census’s (the target
zones), thereby enabling estimations of change within the target zones.

In ongoing work for the National Historical Geographic Information System (NHGIS), we are
applying areal interpolation to U.S. census data to produce geographically standardized time series for a
range of population and housing characteristics at several geographic levels for years ranging back at
least to 1980. This plan entails several interpolation settings, each with unique data constraints, and we
aim to refine our areal interpolation model for each setting to achieve the highest practicable accuracy.
As we establish a model for each setting, we will continually extend NHGIS’s standardized time series to
cover more years and more characteristics.

This article provides an explanation and assessment of the interpolation model used to produce

NHGIS's first release of standardized time series (now available at http://nhgis.org). The release consists

of 1,126 time series organized into 65 tables,! each providing counts of 2000 and 2010 characteristics for
2010 census units at 10 geographic levels: states, counties, census tracts, block groups, county
subdivisions, places, congressional districts, core based (metropolitan and micropolitan) statistical areas
(CBSAs), urban areas, and ZIP Code Tabulation Areas (ZCTAs). By design, the time series cover only
characteristics that were tabulated for 2000 blocks, which limits the scope of this release to one areal

interpolation setting: allocating count data from 2000 blocks to larger 2010 units.



The NHGIS model for this setting uses four types of ancillary data to guide interpolation: census
counts from the target zone year (2010), imperviousness data, road buffers, and water body polygons.
Each of these data types have been used in previously reported models, sometimes in combination with
one or two others, but the NHGIS model is novel in its use of all four types and in the way it combines
the types in a hybrid model. The findings presented here are therefore relevant for other settings as
well—particularly where the source and target zones are census units of different vintages, where the
source zones are relatively small (as are blocks), or where multiple types of ancillary data are available

for model refinement.

2. Background

2.1. Areal interpolation from census blocks

Among U.S. census units, blocks are the smallest and most numerous unit by a large margin. In
2000 census data, there are 8.2 million blocks (excluding Puerto Rico and other territories), 39 times
more than the next most numerous unit, block groups. Additionally, for each census since 1990, blocks
nest exactly within all larger reporting areas (U.S. Census Bureau, 1994, 2012). These conditions suggest
that most 2010 census units, at all levels higher than blocks, should intersect a large number of 2000
blocks, and most 2000 blocks should lie entirely within a single 2010 unit (at all higher levels). If so, any
interpolation model that respects basic zone relationships will allocate most block counts wholly to the
encompassing 2010 units with exact accuracy, resulting in fewer and smaller errors overall than in
settings with larger source zones.

It is therefore understandable that prior applications of block-based areal interpolation have
employed relatively simple models without investigating more sophisticated approaches. For example,
the Longitudinal Tract Database (LTDB), which supplies 1970-2010 census data for 2010 tracts (Logan,

Xu, & Stults, 2014), estimates 2000 population totals by interpolating from blocks using areal weighting



(AW), which allocates source zone counts in proportion to the area of intersection with each target zone
(Goodchild & Lam, 1980). Other research has applied AW to block data as a benchmark against which to
assess the interpolation of tract data (Buttenfield, Ruther, & Leyk, 2015; Ruther, Leyk, & Buttenfield,
2015; Zoraghein et al., 2016). AW'’s basic assumption—that characteristics are uniformly distributed
within each source zone—may often be inaccurate, and numerous studies have shown that, in settings
with larger source zones, more sophisticated models are more effective (e.g., Goodchild, Anselin, &
Deichmann, 1993; Fisher & Langford, 1995; Mrozinski & Cromley, 1999; Gregory, 2002; Reibel &
Bufalino, 2005; Langford, 2006; Reibel & Agrawal, 2007; Schroeder, 2007; Zandbergen & Ignizio, 2010;
etc.). It is nevertheless possible that block-based AW may be acceptably accurate for many applications,
and if so, AW’s simplicity makes it a sensible choice.

Another provider of geographically standardized census data, Geolytics, also interpolates from
block data but weights by road lengths rather than by areas (Tatian, 2003).2 Schroeder (2007) uses a
similar street-side weighting model to interpolate block data for an assessment of tract-based
interpolation, and the Census Bureau also uses street-side weighting for block-based population
estimates in the 1990-2000 tract relationship files (U.S. Census Bureau, 2000). It is intuitive that
population distributions should generally concentrate along road networks, and road-based
interpolation has been more effective than AW in several test settings (Xie, 1995; Mrozinski & Cromley,
1999; Reibel & Bufalino, 2005; Zandbergen & Ignizio, 2010), but no prior research has specifically
assessed road-based interpolation of block data.

One prior assessment does come close, however. The researchers who produced the LTDB
recently assessed several versions of 2000 population estimates for 2010 tracts (Logan, Stults, & Xu,
2016), including NHGIS’s new estimates, which, as detailed below, make use of road data along with
other ancillary data types. Their assessment strategy is to compare estimates with a set of retabulated

2000 populations for 2010 tracts that the Census Bureau produced for a special report (Wilson et al.,



2012). They find that for most tracts, NHGIS’s estimates and LTDB’s block-based AW estimates are very
similar, and the errors are mostly small, especially relative to the much greater errors produced by tract-
based interpolation models. Still, in the 864 tracts where the LTDB and NHGIS population estimates
differ by 100 or more, they find that NHGIS is closer to the benchmark populations in 86% of cases.

The research presented here expands on Logan, Stults, & Xu’s findings by assessing 18 distinct
block-based interpolation models, including LTDB’s and NHGIS’s, making it possible to distinguish the
relative advantages of several ancillary data types and model innovations. The assessment strategy used
here (disaggregating from block pairs, as detailed in Section 3.5) does not enable measuring errors for
actual target census units, as does the prior assessment, but it does avoid a problem of using the
Census’s retabulated tract data, which, as noted by Logan, Stults, & Xu, include many post-census
corrections that artificially inflate measured interpolation errors, suggesting poor model performance in
cases where the actual problem is erroneous counts in the Census’s 2000 block data. The prior
assessment is also restricted to tract-level estimates, whereas the present work provides summaries for

10 geographic levels.

2.2. Uncertainty in block-based estimates

Before detailing the interpolation models examined in this research, it makes sense first to
consider how much effect model selection could have on block-based estimates. Logan, Stults, & Xu’s
(2016) findings demonstrate that, for some census tracts, it is possible for two block-based interpolation
models to produce significantly different results. More generally, we can determine the full extent to
which any two block-based models could possibly differ for any target geographic level by measuring the
total uncertainty inherent in block-based estimates.

In practice, most areal interpolation models assume that census-measured features are located
only in land areas (not water), but beyond that, we cannot know the exact locations of features within a

zone when precise address-level information is not publicly available. Accordingly, in the setting of



interest, the minimum possible 2000 count for a 2010 unit is the sum of counts for 2000 blocks that
share all of their land area with the 2010 unit, and the maximum is the sum of counts for 2000 blocks
that share any land area with the 2010 unit. Wherever the minimum and maximum are not equal, there
is some uncertainty in the 2000 count, and the range between the two limits indicates the magnitude of
uncertainty.

Following this rubric, Table 1 summarizes the uncertainty in 2000 population counts for all 2010
census units in the U.S. at each of the 10 geographic levels covered in NHGIS's first release of
standardized time series. To compute these numbers, land areas for intersections between blocks are
drawn from the 2000-2010 block relationship files (U.S. Census Bureau, 2010), and 2000 block
populations and 2010 geographic codes are drawn from the 2000 and 2010 Summary Files via NHGIS

(Minnesota Population Center, 2011).

Table 1. Frequency and magnitude of uncertainty in block-based 2000 population estimates for 2010
U.S. census units.

2000 2000 pop. 2000 pop. Mean

population is range range Mean (2000 pop.

uncertain > 10% of max >50% of max 2000 pop. range % of

Geographic level N N % N % N % range max)
Block groups 217,740 55,792 25.6 33,361 15.3 9,955 4.6 122 6.6
Tracts 73,057 24,375 33.4 8,542 11.7 1,171 1.6 153 4.1
County subdivisions 35,703 19,136 53.6 6,718 18.8 789 2.2 228 6.4
ZCTAs 32,989 29,945 90.8 13,448 40.8 2,134 6.5 721 14.4
Places 29,261 19,620 67.1 11,621 39.7 3,341 11.4 546 16.6
Urban areas 3,573 3,554 99.5 1,717 48.1 78 2.2 2,492 13.2
Counties 3,143 1,802 57.3 5 0.2 0 0.0 185 0.3
CBSAs 942 621 65.9 0 0.0 0 0.0 198 0.2
Cong. districts 436 389 89.2 0 0.0 0 0.0 2,890 0.4
States 51 37 72.5 0 0.0 0 0.0 139 0.0

Note: ZCTAs = ZIP Code Tabulation Areas, CBSAs = core based statistical areas, Cong. districts = 111* Congressional Districts

The table reveals that uncertainty is pervasive. At all levels, there are large numbers of 2010 units
where the 2000 population cannot be exactly determined from 2000 blocks. At the extreme, 99.5% of
2010 urban areas and 90.8% of 2010 ZCTAs have boundaries that cut through the land area of a

populated 2000 block. Even for the level with the lowest uncertainty rate, block groups, uncertainty



exists in about 1 in 4 cases. Most surprisingly, there are 37 states where the 2000 population cannot be
exactly determined for the 2010 extent, according to the Census Bureau’s definitions of state
boundaries.

One may wonder whether all of these misalignments are legitimate. Did the boundaries of 37
states really change? In fact, state boundaries are sometimes officially adjusted (e.g., Greenhouse, 1998;
Beam, 2012) as are boundaries for other administrative units, but misalighments may also reflect
corrections the Census made to their own boundary definitions. All evidence suggests, however, that all
misalignments indicate de facto changes in census tabulation units even if they do not correspond to
“real” de jure changes in administrative units. The 2000-2010 block relationship files correspond exactly
to the relationships in the Census’s 2010 TIGER/Line Shapefiles, and the Census provides no more
detailed information about relationships between its 2000 and 2010 boundaries. Therefore, if the 2010
TIGER/Line data indicate that a parcel of land was included in different states in 2000 and 2010, then we
can only assume that 2000 and 2010 census tabulations honor that change regardless of whether the
state boundary officially changed.

Even then, one may also wonder how many misalignments are really significant. The method used
here to specify absolute limits assumes that any nonzero portion of a block’s land area could possibly
contain all of the block’s population and housing though that may be practically impossible in cases of
very small misalignments. For example, of the 24,375 2010 tracts identified to have uncertain 2000
populations, 6,009 (24.7%) involve only misalighments that encompass less than 1% of any 2000 block’s
land area and less than 1 hectare (2.47 acres) of land. It seems very unlikely that the entire population of
a block would reside in such a small part, but importantly, it is possible. Even a minuscule misalignment
may only appear to have a small area due to imprecise TIGER/Line definitions, or the Census may have
located addresses there for housing that lies outside of the area. It therefore seems appropriate to

consider any misalignment over land to be a source of uncertainty.



Still, for many applications, frequently occurring uncertainty is unimportant if the uncertainties
are consistently small. The remaining columns in Table 1 demonstrate, however, that uncertainty is
often quite large. For many thousands of units, including 5 counties, the difference between the
minimum and maximum possible 2000 population exceeds 10% of the maximum, and for six levels—
block groups, tracts, county subdivisions, ZCTAs, places, and urban areas—there are also many units
where the possible population range exceeds 50% of the maximum. For these same levels, the rightmost
two columns show that the average uncertainty is also large. In the worst case, about 1/6" of each 2010
place’s potential 2000 population is uncertain, on average. The average proportional uncertainty is
similarly high for ZCTAs and urban areas, and even among tracts, the 2000 populations are on average
about 4% uncertain.

These findings demonstrate the importance of assessing alternative interpolation models for the
setting of interest. In general—and especially for units smaller than counties—2000 blocks do not nest
well enough within 2010 units to ensure accurate allocations of block counts, so the choice of model—
determining how counts are to be allocated within split blocks—could significantly affect the accuracy of
block-based estimates.

These findings also indicate that researchers using block-based estimates should be aware of the
uncertainties. To that end, all of NHGIS’s standardized time series come with lower and upper bounds
for interpolated estimates, following the specification for absolute limits used here, derived separately

for each interpolated population or housing characteristic.

2.3. Example case

Fig. 1 presents a somewhat extreme case of uncertainty where, according to NHGIS boundary files
(based on the U.S. Census’s 2010 TIGER/Line Shapefiles), a single 2000 block (ID: 484910205022002)
shares land area with three 2010 places (Austin, Brushy Creek, and—in a small sliver—Cedar Park) and

with two 2010 tracts (205.09 and 205.10). The uncertainty here is large because the block’s 2000



population, 1,624, is large. In comparison, among all populated 2000 blocks that share land area with
multiple units in one of the 10 target levels, the mean population is 102, but 1,391 of these blocks have

populations larger than 1,624, so the example is not altogether exceptional.

2000 census block
7] 2010 census tracts
) 2010 census places

Fig. 1. A 2000 census block in Williamson County, Texas, that intersects two 2010 census tracts and
three 2010 places. Background image source: 2000 ASI (CAPCOG) imagery, accessed in January 2016 at
ftp://ftp.ci.austin.tx.us/GIS-Data/Regional/javascript/coa_gis.html.

The aerial imagery in Fig. 1 shows that most of the block’s area was undeveloped in 2000, and
most of the housing was located along the block’s eastern boundary, within Brushy Creek. Interpolation
by AW would allocate too much population and housing to Austin and possibly too much to tract 205.10
as well. This example demonstrates that it is possible for AW to produce gross errors even when the
source units are census blocks, and, as in previously studied settings with larger source zones, we should

expect that using ancillary data to model distributions will yield more accurate estimates.



2.4. Alternative approaches

To integrate ancillary data into our interpolation model, we consider two general modeling
approaches—binary dasymetric modeling (BD) and target-density weighting (TDW)—separately and in
combination. As detailed in this section, these models are appealing because they are relatively simple
in terms of data requirements and ease of implementation, and in past research, they have often

performed well relative to more sophisticated models.

2.4.1. Binary dasymetric interpolation

The BD approach is the simplest of a wide range of dasymetric mapping techniques. The general
aim of dasymetric mapping is to improve the representation of a spatial distribution by disaggregating
counts of a feature of interest from one set of internally heterogeneous zones (typically census units) to
another set of zones expected to have relatively uniform densities (Mennis, 2009; Holt & Lu, 2011). In a
BD model, there are only two control zones, an inhabited and an uninhabited zone. To apply areal
interpolation using a BD model, the implementation mirrors AW but with the measured areas restricted
to the inhabited zone.

Many types of ancillary data may be used to delineate zones for BD models. In an early example,
Wright (1936) identifies zones through interpretation of topographic maps. More recently, the most
common ancillary data type has been land cover and land use data (e.g., Eicher & Brewer, 2001; Holt, Lo,
& Hodler, 2004; Langford, 2006; Mennis & Hultgren, 2006; Lin, Cromley, & Zhang, 2011; Cromley,
Hanink, & Bentley, 2012; Lin et al., 2013; Schroeder & Van Riper, 2013; Buttenfield, Ruther, & Leyk,
2015; Lin & Cromley, 2015; Ruther, Leyk, & Buttenfield, 2015; Zoraghein et al., 2016). Under a strict
definition of dasymetric mapping, the ancillary data must represent zones, which excludes models based
on road lengths (as discussed in Section 2.1) or counts of address points (e.g., Tapp, 2010), but line and
point data can still be used to define BD models through the use of buffering. For example, one may

define the inhabited zone as a 100-foot buffer around roads (Mrozinski & Cromley, 1999).
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Another data type that may be effective for BD models is imperviousness data, which describe
how much of the land surface is impenetrable by water, typically in raster format with cell values
ranging from 0 to 100%. Past research has effectively modeled population densities as a continuous
function of imperviousness (Wu & Murray, 2005; Lu, Weng, & Guiying, 2006; Morton & Yuan, 2009;
Zandbergen & Ignizio, 2010), but a simpler option, which we consider here, is to reclassify the data,
using a single imperviousness threshold to distinguish an inhabited zone for a BD model.

Much research on dasymetric models has focused on settings where there are multiple classes of
inhabited zones with different expected density levels. For example, land cover data sets often
distinguish different classes of developed land, but making use of such distinctions requires an
additional calibration step in order to determine an expected density for each zone class. Existing
calibration approaches range in complexity from simple “controlled guesswork” (Wright, 1936) and
subjective decisions (Eicher & Brewer, 2001) to systematic sampling from source zones that are
representative of each control zone class (Mennis, 2003; Mennis & Hultgren, 2006), and finally to a wide
array of statistical modeling techniques (e.g., Langford, Maguire, & Unwin, 1991; Goodchild, Anselin, &
Deichmann, 1993; Langford, 2006; Reibel & Agrawal, 2007; Lin, Cromley, & Zhang, 2011; Cromley,
Hanink, & Bentley, 2012; Schroeder and Van Riper, 2013; Lin & Cromley, 2015).

Importantly, however, in studies that compare BD and multi-class dasymetric models, BD models
are often nearly as accurate as, and sometimes more accurate than, multi-class models (Eicher &
Brewer, 2001; Fisher & Langford, 1995; Langford, 2006; Lin, Cromley, & Zhang, 2011; Cromley, Hanink, &
Bentley, 2012; Lin et al., 2013; Schroeder and Van Riper, 2013; Lin & Cromley, 2015). Based on these
findings, we acknowledge that a well-designed multi-class dasymetric model would likely outperform BD
models in the setting of interest, but we also expect the potential accuracy gain of a multi-class model to
be small, especially relative to the gain achieved by blending any dasymetric model with a TDW model

through a hybrid approach, as indicated by the findings of Schroeder & Van Riper (2013). We therefore
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leave the assessment of multi-class models for block-based interpolation to future research and focus

here on simpler BD models.

2.4.2. Target-density weighting

The basic assumption of a TDW model is that, within each source zone, the density distribution of
the feature of interest is proportional to the density distribution of another, related feature among
intersecting target units (Schroeder 2007). For the setting of interest, the TDW assumption is that within
each 2000 block, the distribution of 2000 densities is proportional to the densities of a related 2010
characteristic. For example, if a 2000 block intersects two 2010 target units, and one of the target units
is twice as dense as the other in 2010, then TDW allocates the 2000 block’s characteristics as needed to
produce a 2:1 ratio in the estimated densities for the two areas of intersection with the target units.

In the original TDW specification, Schroeder (2007) measures areas and densities using total land
areas. An alternative is to restrict TDW’s area measures, as in a BD model, to an “inhabited zone” based
on some other ancillary data. This approach of dasymetrically refining TDW improves on standard land-
area TDW in several settings of tract-based interpolation (Ruther, Leyk, & Buttenfield, 2015; Buttenfield,
Ruther, & Leyk, 2015; Zoraghein et al., 2016). We also expect this approach to perform well for block-
based interpolation. Given a 2000 block that intersects a small part of a large 2010 unit where most of
the land is a roadless forest, standard TDW would assign a low density to the area of intersection, but
dasymetric refinement using land cover data or road buffers could indicate that the intersection lay
within a developed part of the 2010 unit, resulting in a much higher—and probably more accurate—
modeled density within the intersection. Therefore, for each of the BD models we test, we also specify

and test a corresponding dasymetrically refined TDW model.
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2.4.3. Hybrid approach

Compared directly to BD models, TDW (with or without dasymetric refinement) has generally
performed similarly well or better (Schroeder & Van Riper, 2013; Ruther, Leyk, & Buttenfield, 2015;
Buttenfield, Ruther, & Leyk, 2015; Zoraghein et al., 2016). There is no need, however, to employ only
one of the two. A hybrid approach can leverage the complementary advantages of each individual
model. For settings like ours, TDW should generally be effective where distributions remain stable over
time (e.g., where the 2010 population distribution is proportionally similar to the 2000 distribution).
However, where distributions changed significantly between censuses, or where the density within a
source-target intersection is very different from the density of the whole target zone, we may expect a
BD model to be more effective. Therefore, as detailed in Section 3.8, we investigate ways to combine
the best-performing BD and TDW models through a weighted average, following the approach used by

Schroeder and Van Riper (2013) to construct a TDW-dasymetric hybrid in another setting.

3. Data & methods

3.1. General framework

To derive block-based 2000 counts for several levels of 2010 geography, NHGIS’s process consists
of two phases. In the first, we derive interpolation weights for all intersections between 2000 and 2010
census blocks, where each weight represents the estimated proportion of a 2000 block's 2000 residents
and housing units that are located in its intersection with a 2010 block. In the second phase, we
aggregate the block-to-block interpolation weights to construct block-to-target-unit weights for each of
the target geographic levels. We then apply the aggregated weights to allocate 2000 block counts
among target units, and we sum the allocated counts for each target unit to produce the final estimates.

In this process, the critical interpolation setting is from 2000 blocks to 2010 blocks. Therefore, our

interpolation model development and testing is focused on the block-to-block setting.

13



3.2. Base data

We obtain spatial definitions of 2000 and 2010 blocks from NHGIS boundary files (Minnesota
Population Center, 2011) based on the U.S. Census Bureau’s 2010 TIGER/Line files, and we obtain 2000
block counts from NHGIS tables drawn from Census 2000 Summary File 1. We determine the
relationships between 2010 blocks and other 2010 census units from geographic codes in NHGIS block
files drawn from 2010 Census Summary File 1.

At this time, NHGIS does not include 2000 data for Puerto Rico or other territories, so the time

series are limited to the U.S. proper, as are all results presented here.

3.3. Ancillary data

We use four types of ancillary data from three sources:

e Transportation lines and water body polygons from the 2010 TIGER/Line Shapefiles

e Percent imperviousness from the 2001 National Land Cover Database (NLCD 2001, 2011

Edition; Homer et al., 2007)

e 2010 census block population and housing unit counts from 2010 Census Summary File 1
The three sources each provide free, publicly available data with nationwide coverage (or in the case of
NLCD data, nearly nationwide coverage, as discussed in Section 3.5), and the four data types have each
been used effectively in past areal interpolation research. We set aside several other types of ancillary
data that would likely be useful for block-based interpolation but are not readily available for the entire
U.S., including parcel data and address points.

NLCD 2001 is provided in a raster format at 30-meter resolution, which is unfortunately too coarse
to consistently distinguish isolated housing in rural areas (Zandbergen & Ignizio, 2010), but it is still fine
enough to distinguish land cover types within most census blocks. Of the 352,082 2000 blocks that
require interpolation and are covered by NLCD data, the median land area is 0.56 km?, and only 9,896

cases (2.8%) have land areas under 9,000 m? (the size of 10 NLCD cells).

14



NLCD 2001 also includes classified land cover data that distinguishes four classes of developed
land (open space, and low, medium, and high intensity), which have been used to define BD models in
past research (Buttenfield, Ruther, & Leyk, 2015; Ruther, Leyk, & Buttenfield, 2015; Zoraghein et al.,
2016). We examined the content of each of these classes by comparison with satellite imagery in six
counties with distinct environments and development patterns (Allegheny County, Pennsylvania; Bell
County, Texas; Hennepin County, Minnesota; Kootenai County, Idaho; Richland County, South Carolina;
and Santa Barbara County, California). We find that the open space class includes many large
uninhabited areas (e.g., parks, golf courses, roadways, etc.) but also many low-density residential areas,
so it would be problematic either to include the whole class in the inhabited zone or to omit it. Using the
imperviousness data offers more flexibility for fine-tuning the inhabited zone’s extent.

In our TDW models, the guiding target zone data are the summed population and housing unit
densities for each 2010 block: (N persons + N housing units) / area. We opt to use this sum because our
aim is to use a single TDW model to interpolate census counts of both population and housing
characteristics. In some areas, residents may greatly outnumber housing units (e.g., where most
residents live in group quarters) or vice versa (e.g., where most of the housing is vacant). Therefore,
local spatial distributions of population and housing may differ considerably, and using the densities of
one to guide the interpolation of the other could sometimes be grossly inaccurate. Using the summed
densities appears to be a suitable compromise, whereby all interpolation is guided by both the
population and housing distributions. It would also be possible to use different 2010 characteristics to
guide the interpolation of different 2000 characteristics, but using a single set of weights simplifies the

model and ensures that sums of interpolated subtotals will consistently match interpolated totals.?

3.4. Inhabited zone definitions
We test eight BD models and eight TDW models corresponding to eight definitions of inhabited
zones (Table 2). The first zone definition (L) covers all land area, which we delineate by erasing water
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polygons from block polygons. The BD model using the L zone (BD-L) is effectively identical to many past
applications of AW, which are also often limited to land area, and the TDW-L model is effectively
equivalent to standard TDW without dasymetric refinement. To construct the remaining seven zone
definitions, we begin with the L zone (water erased) and then apply one or more of three additional

restrictions, identified as D, R, and N.

Table 2. Eight definitions of inhabited zones.
ZoneID Description
L All land
D Developed land: imperviousness > 5%
R Land within 300 feet of a residential road
N Land not in transportation use

DR, DN,

RN, DRN Intersections of D, R, & N zones

The D zone is comprised of land within any NLCD 2001 30-meter square cell that is at least 5%
impervious. We selected the 5% threshold after inspecting various imperviousness levels compared to
satellite imagery in the six counties noted in 3.3. This threshold omits some residential land (mainly in
low-density or heavily wooded areas) and includes developed land of all types (commercial, industrial,
transportation, institutional, recreational, etc.), but overall, the 5% threshold appears to achieve an
effective balance between errors of omission and commission. Some past research has also omitted
high-intensity developed or highly impervious land from population distribution models because such
areas are predominantly industrial or commercial (Holt, Lo, & Hodler, 2004; Morton & Yuan, 2009;
Zandbergen & Ignizio, 2010; Buttenfield, Ruther, & Leyk, 2015; Ruther, Leyk, & Buttenfield, 2015), but
we found many locales, especially in urban cores, where residential land is highly impervious, so we
impose no upper bound.

The R zone is comprised of land within 300 feet of a residential road according to 2010 TIGER/Line

road definitions. We inspected various examples of each TIGER/Line road class and identified a class as
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residential if it, at least occasionally, provides direct access to housing.* Similarly, we considered a range
of possible buffer widths around roads, beginning with 100 feet, as used in prior research (Mrozinski &
Cromley, 1999; Lin et al., 2013; Lin & Cromley, 2015). We determined that a distance of 300 feet, though
it extends beyond most housing in typical urban settings, is more suitable for exurban and rural areas,
where long driveways are common, and for large housing complexes, which often contain access roads
that are not represented in TIGER/Line files. Using 2010 road definitions to model 2000 distributions is
not ideal, but due to major accuracy improvements between TIGER/Line versions, the 2000 TIGER/Line
roads can deviate greatly from the more accurate block boundaries in the 2010 TIGER/Line files, so we
have opted to construct the R zone from 2010 roads. It may be possible to leverage 2000 TIGER/Line
information to distinguish 2010 TIGER/Line roads that likely existed in 2000, but we achieve a similar
outcome by intersecting the R and D zones, as discussed below.

The N zone is comprised of all land not covered by transportation features, as determined by
applying a small buffer around 2010 TIGER/Line roads and railroads. We use different buffer widths to
represent an expected minimum distance from center line to housing for each feature class.® This type
of zone has not often been used in dasymetric models. Morton & Yuan (2009) omit pixels that intersect
major highways from one of their models, and Zandbergen & Ignizio (2010) investigate a model using
“cleaned” imperviousness data that effectively masks out isolated roads. Zandbergen & Ignizio’s findings
suggest that excluding road areas is generally unhelpful, but their approach and setting differ from ours
in several ways. It seems that excluding land in transportation use should at least reduce errors in the
many instances where block boundaries that follow transportation features were adjusted by a small
distance. Such changes may comprise a large portion of a block’s area within the D or R zones, but if the
adjustment occurred mainly over transportation features, the N zone should properly indicate that little

or no population was involved.
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The last four zone definitions (DR, DN, RN, and DRN) are the intersections of each possible
combination of the D, R, and N zones. For example, the DR zone is comprised of land that is at least 5%
impervious and within 300 feet of a residential road. Prior research has shown that dasymetric models
based on land cover data yield more accurate results if they are further restricted to areas within road
buffers (Lin et al., 2013; Lin & Cromley, 2015), and in our case, we believe intersecting the D and R zones
should mitigate key problems for each individual zone definition. The R zone undesirably includes areas
where roads were built between 2000 and 2010, but if there was no impervious surface in these areas in
2001, the DR zone properly excludes them. The D zone includes areas of impervious surface that are far
removed from residential roads, but such areas are typically uninhabited industrial or commercial
complexes, quarries, airports, expressways, golf courses, etc., and the DR zone excludes them. As for the
N zone, it may be a poor model on its own given that it assigns lower weights to areas with more roads,
but by intersecting the N zone with the D or R zone, the D and R zones’ more restrictive extents might
alleviate the N zone's inverse weighting problem, and the N zone’s key benefit—preventing population
from being allocated to road areas—might then outweigh its costs.

Comparing the modeled distributions in Fig. 2 with the aerial imagery in Fig. 1 reveals several
potential pros and cons for the tested models. The BD-L (AW) model, as expected, assigns undesirably
large weights to the block’s western parts, which were generally undeveloped in 2000. In contrast, the
BD-D and BD-DR models properly assign more weight to the east side of the block. Red circles highlight
the main differences between the BD-D and BD-DR models, areas that today encompass a plant nursery

and a storage facility: nonresidential uses that the BD-DR inhabited zone effectively excludes.
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Fig. 2. Density distributions (in shades of gray) and interpolation weights given by six of the tested
models for the example case from Fig. 1.

The lower examples in Fig. 2 all indicate how using ancillary data from 2010 can be problematic.
Because there are many new 2010 roads in the western parts of the block, the BD-RN model assigns
even more weight to those parts than does the BD-L model. Similarly, because the 2010 population and
housing unit density was relatively high in the western parts, the TDW models also assign high weights
there. Still, some potential advantages of TDW are also apparent. Because there is no 2010 population
or housing in the 2010 block that intersects the northern tip of this 2000 block, the TDW models
appropriately assign no weight to the small sliver there. Also, importantly, the rapid growth that

occurred in this area is not typical of all split blocks. If this area’s population had been more stable, we
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might reasonably expect the continuously varying densities of the TDW models to be more accurate

than the simpler uniform densities of the BD models.

3.5. Assessment setting

The assessment approach used here, mirroring that of Schroeder & Van Riper (2013), is to
simulate the setting of interest by interpolating from pairs of neighboring source zones back to
individual source zones, for which the actual counts are known. Specifically, we first select all 2000
blocks that require interpolation—those that have nonzero population or housing counts and share land
with multiple 2010 units in any of 14 census summary levels (the 10 levels of NHGIS’s first standardized
data release plus 4 levels that NHGIS may include in a future release: 113" Congressional Districts and
elementary, secondary, and unified school districts). For our primary assessment work, we also limit the
selection to areas that are completely covered by NLCD data, which omits 303 blocks of interest in
Alaska. For each of the remaining 352,082 blocks of interest, we identify the nearest neighboring block
(whether it is a block of interest or not) according to distance between centroids, sum the population
and housing unit counts for the block pair, estimate the sum of population and housing units within the
block of interest by interpolating from the pair total using each of the tested models, and finally
compute each model’s errors for all blocks of interest.®

In the proxy setting, the target zones are effectively 2000 blocks, so true “target-density”
weighting would entail using 2000 block data to guide the interpolation. To better simulate the setting
of interest, our TDW applications instead use 2010 block data, again mirroring the approach of
Schroeder & Van Riper (2013).

We also undertake a separate series of tests to optimize models for the areas in Alaska not

covered by NLCD 2001 data, omitting all models that use the D zone.
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3.6. Error measures

We compute (and aim to minimize) errors in the sums of 2000 population and housing unit counts
for the same reason that we use the corresponding 2010 sums as ancillary data in the TDW models: our
aim is to use a single model to interpolate all types of census counts, and we believe this sumis a
suitable general proxy for all population and housing characteristics.

To summarize errors for each model, we first consider the mean absolute error (MAE) and root
mean square error (RMSE) in estimated counts. Block counts, however, have an extremely skewed
distribution. Among the tested block pairs, the median sum of 2000 population and housing units is 72,
the 99" percentile is 1,621, and the maximum is 34,586. Given this distribution, a small number of cases
can have an outsize influence on count error summary statistics. For example, using the BD-DR model,
the largest 0.1% of errors account for 48% of the sum of squared errors.

We therefore also consider the mean absolute proportion error (MAPE) and root mean square
proportion error (RMSPE), defining a “proportion error” to be the difference between the actual and
estimated proportion of each block pair’s count in the corresponding block of interest. Proportion errors
are constrained between -1 and 1, and the outliers are much less extreme than among count errors.
Proportion errors, however, tend to be larger for block pairs with small counts. The MAPE in BD-DR
estimates for the 12% of block pairs with counts less than 10 is 0.231, which is nearly twice the MAPE for
the 59% of pairs with counts greater than 50 (0.120). This makes sense given that in block pairs with
small counts, it is common for all population and housing to be located in a single block, resulting in
actual proportions of 0 and 1, which maximizes the potential deviation from estimated proportions.

In short, a refinement strategy that minimizes MAE or RMSE may be too sensitive to cases with
very large counts, and a strategy that minimizes MAPE or RMSPE may be too sensitive to cases with very
small counts. We base our final model selection on a compromise approach: we compute weighted

MAPE and RMSPE statistics, where each case is weighted by the /og of the source zone count (the block
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pair’s sum of population and housing). In these log-weighted error summaries (LW-MAPE and LW-
RMSPE), large-count cases are given only moderately higher weights than small-count cases, striking a

balance between the extremes of the unweighted error summaries.

3.7. Zero denominators

Both the BD and TDW models assume that each 2000 block contains some area classified as
inhabited, and the TDW model further assumes that there is some 2010 population and housing in the
intersecting 2010 blocks. In cases where these assumptions do not hold, the standard model
specifications produce divide-by-zero errors. To avoid this problem, our implementation for each model
“cascades” through less restrictive models until it reaches a model with a nonzero denominator. The
final ordering is based on model performance according to LW-RMSPE in the proxy setting, as reported
in Section 4.1. For example, if the TDW-DR implementation encounters a zero denominator, it defaults

to the TDW-R model, which in turn defaults to TDW-L, to BD-DR, to BD-R, and finally to BD-L (AW).

3.8. Hybrid model definitions

The general formula we use for a hybrid TDW-BD model is

Pu = wrpbr + (1 —wr)pp (1)
where pr and pg are interpolation weights (i.e., estimated proportions) for a given source-target zone
intersection as given by a TDW and a BD model, respectively; py is the “hybrid” interpolation weight; wr
is the TDW model weight; and the BD model weight is set to (1 — wy).

Following Schroeder & Van Riper (2013), we construct two hybrid models: one that uses constant
model weights (Hybrid-CW) and one in which the model weights vary among source zones (Hybrid-VW).

To select a constant value for wt, we apply weighted least-squares (WLS) regression to fit the model

(Bu — Ps) = wr(Pr — Pp) (2)
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using data from the proxy setting described in Section 3.5. The observation weights are the same as for
the LW-MAPE and LW-RMSPE statistics (the log of each block pair’s sum of population and housing
units). The least-squares fitted value of wr is therefore the value that minimizes the LW-RMSPE for the
proxy setting.

The design of the Hybrid-VW model is based on the expectation that the relative accuracy of BD
and TDW estimates is proportional to the degree of change in distributions between the source and
target zone years. Where distributions are stable, TDW should be more effective; where distributions
have changed greatly, BD should be more effective. Accordingly, the Hybrid-VW model sets wr to be a
linear function of the absolute rate of change in each source zone:

Wrs = Qg t+ all&)\lsl (3)
where Ay, is an estimate of the normalized rate of change in the feature of interest within each source
zone s between the source and target years (in our setting, between 2000 and 2010 sums of population
and housing units). A “normalized change rate” divides the difference in values by their sum, which
helpfully prevents the extreme positive skew that standard rate measures often produce (Schroeder &
Van Riper, 2013). To estimate 2010 counts in source zones for the change measure, we use the counts
produced during the TDW model implementation, which are effectively a BD interpolation of 2010 block
counts using the same inhabited zone definition as the given TDW model. To obtain fitted values for the
a coefficients in equation (3), we substitute its right-hand side for wr in equation (2) and fit the model

using WLS regression as for the Hybrid-CW model.

4. Results & discussion

4.1. Assessment of BD & TDW models
In the proxy setting, all of the TDW models outperform all of the BD models on all error measures

(Table 3). This is consistent with past findings, where TDW models have outperformed BD models on
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most—though sometimes not all—error measures (Schroeder & Van Riper, 2013; Ruther, Leyk, &

Buttenfield, 2015; Buttenfield, Ruther, & Leyk, 2015; Zoraghein et al., 2016). We conclude that, in our

setting of interest, 2010 block data are the most informative ancillary data type of those we examine (as

used in the relatively simple models we consider here). Even for the simplest model using 2010 block
data (TDW-L), the LW-RMSPE is 19% less than for the best-performing BD model (BD-DR), which is in

turn 10% less than the LW-RMSPE for BD-L (AW), the simplest model.

Table 3. Summary of errors for the tested models in the proxy setting.

Model MAE RMSE MAPE RMSPE LW-MAPE LW-RMSPE
BD-L (AW) 20.55 61.49 .1626 .2451 .1519 .2316
BD-N 20.87 62.52 .1637 .2501 .1537 .2365
BD-R 18.53 56.91 .1525 2272 .1396 2114
BD-RN 18.72 57.42 1524 .2310 .1403 .2152
BD-D 17.48 53.98 .1565 .2358 .1396 .2136
BD-DN 17.57 54.53 .1565 2412 .1402 .2183
BD-DR 17.07 53.11 .1541 .2323 .1368 .2093
BD-DRN 17.10 53.27 .1540 .2376 .1372 .2138
TDW-L 10.82 45.89 .1047 .1947 .0909 .1695
TDW-N 10.90 46.12 .1051 .1963 .0914 1712
TDW-R 10.55 45.60 .1027 1915 .0886 .1659
TDW-RN 10.60 45.80 .1029 .1928 .0890 .1673
TDW-D 10.50 45.43 .1036 .1940 .0890 .1672
TDW-DN 10.57 45.70 .1040 .1960 .0897 .1692
TDW-DR 10.45 45.36 .1033 .1938 .0887 .1668
TDW-DRN 10.52 45.61 .1037 .1956 .0893 .1687
Hybrid-CW 11.12 42.67 .1067 .1801 .0920 .1574
Hybrid-VW 10.37 40.52 .1028 .1752 .0877 .1525

Notes: N = 352,082. Bold numbers indicate the lowest value for each measure among each class of models. Bold italic numbers

indicate the lowest values overall. MAE = mean absolute error; RMSE = root mean square error; MAPE = mean absolute
proportion error; RMSPE = root mean square proportion error; LW = log-weighted; BD = binary dasymetric; AW = areal
weighting; TDW = target-density weighting; Hybrid-CW = constant-weight hybrid; Hybrid-VW = variable-weight hybrid; see

Table 2 for zone identifiers.

According to both LW-MAPE and LW-RMSPE, BD-DR is the most accurate BD model, and TDW-R is

the most accurate TDW model, so these are the two models we use to construct hybrid models (Section

4.2). These two models do not, however, yield the lowest values for all error summary statistics. Among

the BD models, according to MAPE, BD-RN is most effective, and according to RMSPE, BD-R is most

effective. Among the TDW models, according to both MAE and RMSE, TDW-DR is most effective. Given

that the MAE and RMSE are more sensitive to large-count cases, and the MAPE and RMSPE are more
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sensitive to small-count cases, these outcomes suggest that, among small-count cases, it is more
effective to limit the inhabited zone only to 2010 road buffers (with or without excluding land in
transportation use) than to limit the zone to 2001 developed (= 5% impervious) land in any way. This
may indicate that in rural areas, where low block counts are more common, road buffers generally
correspond better to distributions of population and housing than does imperviousness even though the
road buffers in this case describe conditions 10 years removed from the census. Meanwhile, among
blocks with very large counts, it appears that the most effective inhabited zone definition, for both BD
and TDW models, is the intersection of the road buffer and developed land (DR).

Somewhat surprisingly, models with the N restriction are less effective than corresponding models
without the N restriction in nearly all cases. The only exceptions are where the MAPEs for BD-RN and
BD-DRN are slightly lower than for BD-R and BD-DR, respectively. Multiple factors may contribute to this
result. Most importantly, in block parts that are relatively large, larger quantities of road surface may
generally correspond to higher—not lower—population and housing densities. In residential
developments, parcel sizes are generally smaller and cul-de-sacs are more common than in non-
residential areas, so road density tends to be higher in residential areas, and erasing land in
transportation use will often diminish the weight given to residential parts of a block. In addition, upon
closer inspection, we discovered that the N models occasionally perform poorly even where we expect
them to be best—namely, where one block in a pair is comprised mainly of land in transportation use,
leaving little space for housing. Models without the N restriction can assign unrealistically high counts to
such areas, but in fact, official counts for such areas occasionally are unrealistically high because of
mismatches between where the Census locates people and where people actually live. We have
identified instances where large housing complexes have had all of their units counted in a small
neighboring block comprised mainly of road surface. Such cases, though uncommon, occur often

enough to diminish what could otherwise be a key advantage of the N models.
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Overall, the choice of the inhabited zone definition matters more for BD models than for TDW.
Among TDW models, the difference between the highest and lowest values for each error measure is
small; the largest difference is in MAE, for which the lowest value is only 4% less than the highest value.
In contrast, the differences for BD models are larger across all measures, with lowest values that are 7 to
18% less than the highest values. This finding differs from past research where the impact of dasymetric
refinement on TDW outcomes has been greater (Ruther, Leyk, & Buttenfield, 2015; Buttenfield, Ruther,
& Leyk, 2015). One explanation may be that, in our setting, the target zones (2010 blocks) tend to nest
within source zones (2000 blocks or block pairs) more often than in the previously tested settings where
the zones are tracts. Where target zones nest completely within source zones, the inhabited zone
definition has essentially no effect on TDW outcomes. The new results suggest that, in our setting,
undertaking further refinement of the zone definitions (e.g., optimizing the width of the road buffer or
the imperviousness threshold) would likely have little impact on the TDW results, though it could be

important for the BD results, and by extension, for the hybrid models as well.

4.2. Fitted hybrid models

The fitted Hybrid-CW model assigns a weight of 0.7247 to TDW-R and 0.2753 to BD-DR, which
yields an RMSE, RMSPE, and LW-RMSPE lower than any of the non-hybrid models (Table 3). However,
Hybrid-CW’s MAE, MAPE, and LW-MAPE are higher than for any of the TDW models. Because the root
mean square statistics are more sensitive to large errors than the mean statistics, the results suggest
that in most cases using TDW alone is more effective than a simple constant-weight hybrid with BD (as
indicated by the mean values), but the Hybrid-CW model yields fewer very large errors than using TDW
alone (as indicated by the root mean square values).

The fitted formula for TDW-R weights in the Hybrid-VW model is:

wrs = 0.9192 — 0.8057|Ay;| (4)
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As expected, wr s is high where population and housing are stable (0.9192 in a source zone with no
estimated change), and it declines as the magnitude of change increases (to a lower limit of 0.9192 —
0.8057 = 0.1135). In the example block from Fig. 1, the estimated growth is large, from 2,111 in 2000 to
8,137 in 2010, which gives a normalized change rate of 0.5880 and a TDW-R weight of 0.4454, well
below the Hybrid-CW model’s 0.7247. Fig. 3 illustrates the effect of this difference on the two hybrid
models’ outcomes. By giving a lower model weight to TDW-R, the Hybrid-VW model appropriately

assigns higher interpolation weights to the eastern parts of the block.
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Fig. 3. Density distributions and interpolation weights given by the constant-weight (Hybrid-CW) and
variable-weight (Hybrid-VW) hybrid models for the example case from Fig. 1.

Table 3 shows that Hybrid-VW is the most effective tested model by nearly all measures. (TDW-R’s
MAPE is lower than Hybrid-VW’s by only 0.0001.) In terms of LW-RMSPE, Hybrid-VW errors are 3% lower
than Hybrid-CW’s, 8% lower than TDW-R’s, 27% lower than BD-DR’s, and 34% lower than AW'’s.
Therefore, we use the Hybrid-VW model for NHGIS's first release of geographically standardized time
series tables in all areas covered by NLCD 2001 data.

Despite Hybrid-VW’s overall advantages, there are still 112,417 cases (31.9% of the proxy setting)
where AW yields a smaller absolute error, but—as among tract population estimates (Logan, Stults, &
Xu, 2016)—in most cases where AW outperforms Hybrid-VW, the difference between the two models’

estimates is small. Where the estimates differ by more than 50 in the proxy setting (N = 24,560), AW is
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more accurate in only 9.2% of cases. There are also 1,905 cases where AW’s absolute error is greater
than 100 and Hybrid-VW's is less than 10, but there are only 69 cases where the opposite is true. In the
extreme, there are 65 cases where AW'’s absolute error exceeds Hybrid-VW’s by more than 1,000 and
only 7 cases where the opposite is true.” In short, although Hybrid-VW is not always more accurate than

AW, it is rarely much worse, and it is commonly much better.

4.3. Secondary Alaska model

For the 303 blocks of interest in parts of Alaska not covered by NLCD 2001 data (everywhere
outside of a section centered on Anchorage, from Denali in the north to the southern reaches of the
Kenai Peninsula), the most effective BD model (using the L, N, R, or RN zones) is BD-R, with an LW-
RSMPE of 0.2665. The lowest LW-RMSPE among TDW models is, somewhat surprisingly, for TDW-N
(0.16032), but TDW-L’s is only slightly higher (0.16033), and TDW-L's LW-MAPE (0.0751) is less than
TDW-N’s (0.0753), so we opt to use the simpler TDW-L model for the hybrid models. The Hybrid-CW
model sets wr = 0.8773 and yields an LW-RMSPE of 0.1575. The Hybrid-VW model yields an only slightly
lower LW-RMSPE (0.1574), and its a; coefficient is not statistically significant, so we opt to use the

simpler Hybrid-CW model for the final secondary Alaska model.

4.4. Effects of refinement

Although Table 3 reveals some major differences among the tested models in the proxy setting,
the relative differences will necessarily be smaller, on average, in the actual setting of interest. After all,
the uncertainty in block-based 2000 counts is small for most target 2010 units (Table 1), and
interpolation refinements may affect only the “uncertain portion” of block count assignments.

Table 4 demonstrates that the effects of model refinement are nevertheless still substantial in
many areas. For example, using the Hybrid-VW model instead of BD-L (AW) alters 2000 population

estimates for 2010 urban areas by an average of 425 persons (among all urban areas). Among the nearly
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20,000 places where the 2000 population is uncertain, Hybrid-VW estimates differ from AW estimates
by about 6.7% on average. Among tracts, the average difference is quite small, but there are still 955
tracts where the difference is greater than 5% (relative to the mean of the BD-L and Hybrid-VW
estimates), and for 317 tracts, the difference is greater than 25%. Not surprisingly, the four highest
summary levels (counties, CBSAs, congressional districts, and states) exhibit no major effects, which
confirms that for those levels, the exact model design is generally unimportant. At all other levels,
model refinement significantly alters some estimates, and the results in the proxy setting—as in Logan

et al.’s (2016) research—indicate that the refined estimates are generally more reliable.

Table 4. Summary of absolute differences in block-based estimates of 2000 population for 2010 census
units, comparing results given by the BD-L (AW) and Hybrid-VW models.

2000 population is AD > 5% of 2 AD > 25% of 2
All units uncertain estimates’ mean estimates’ mean
Mean (AD Mean (AD % of % of
as % of 2 as % of 2 % of uncer- % of uncer-
Mean estimates’ Mean estimates’ all tain all tain
Geographic level N AD mean) N AD mean) N units  units N units  units
Block groups 217,740 9 1.0 55,792 35 3.9 7,366 3.4 13.2 2,020 0.9 3.6
Tracts 73,057 7 0.6 24,375 20 1.8 955 1.3 3.9 317 0.4 1.3
County subdivisions 35,703 6 0.4 19,136 12 0.8 426 1.2 2.2 71 0.2 0.4
ZCTAs 32,989 45 2.2 29,945 50 2.4 2,554 7.7 8.5 532 1.6 1.8
Places 29,261 34 4.5 19,620 50 6.7 4,180 143 21.3 1,462 5.0 7.5
Urban areas 3,573 425 2.8 3,554 428 2.8 448 12.5 12.6 24 0.7 0.7
Counties 3,143 3 0.0 1,802 5 0.0 0 0.0 0.0 0 0.0 0.0
CBSAs 942 3 0.0 621 4 0.0 0 0.0 0.0 0 0.0 0.0
Cong. districts 436 12 0.0 389 14 0.0 0 0.0 0.0 0 0.0 0.0
States 51 1 0.0 37 2 0.0 0 0.0 0.0 0 0.0 0.0

AD = absolute difference, ZCTAs = ZIP Code Tabulation Areas, CBSAs = core based statistical areas, Cong. districts = 111t
Congressional Districts

5. Conclusions

To produce high-quality block-based estimates of 2000 census counts for 2010 units, we define
and test several areal interpolation models, integrating several types of ancillary data. We arrive at a
hybrid model that blends a TDW and BD model through a variably weighted average, making use of
2010 block data, imperviousness data, road buffers, and water polygons. Although the final estimates
from this hybrid model are generally similar to areal weighting estimates, there are many cases where

the estimates differ greatly (Table 4), and given the hybrid model’s relatively strong performance in a
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proxy test setting (Table 3), we may assume that it yields substantial accuracy gains among the target
census units as well.

This work has uncovered several additional findings that should be relevant elsewhere. Most
notably: when allocating 2000 block counts to 2010 units, uncertainty due to boundary misalignment is
pervasive and occasionally large; using an imperviousness threshold together with a road buffer can be
an effective way to construct a BD model; omitting land in transportation use from a BD inhabited zone
is generally unhelpful; in our test setting, TDW is considerably more accurate than any BD model, and
the exact definition of inhabited area used in the TDW model appears to be relatively unimportant; and
lastly, in accord with a previous finding (Schroeder and Van Riper, 2013), a variable-weight hybrid of
TDW and BD is an effective way to exploit context-dependent advantages of each approach.

Estimates using the final hybrid model are now publicly available via NHGIS along with lower and
upper bounds for each estimate. A primary goal of our future work will be to extend NHGIS's
geographically standardized time series to cover more years and characteristics. To cover more years,
we must address new challenges due to the varying availability and quality of data across time. To cover
more characteristics, particularly those that the Census does not report at the block level (e.g., income,
educational attainment, nativity, etc.), we must address the challenge of interpolating from larger units,
potentially using related block characteristics as a guide. Geolytics and the LTDB both interpolate tract
data using block populations as a weighting factor, but weighting by population alone for all
interpolated characteristics results in uniform rate estimates among all parts of each source tract. It
remains to be determined what effect this condition may have in application settings and whether there
is a practical means of using multiple block-level characteristics to model distributions more effectively.

Geolytics and LTDB also both use tract data as the basis for all counts other than total population.
Tracts are the smallest units for which some counts are tabulated, but there are also many counts

available for block groups and blocks, and for such counts, tracts are an unnecessarily coarse basis. The
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comparisons of block-based estimates provided here and by Logan, Stults, & Xu (2016) therefore directly
pertain only to LTDB’s and NHGIS’s total population estimates. For all other standardized counts, we
may expect that the differences between NHGIS's block-based estimates and LTDB'’s tract-based
estimates will generally be larger, and that the block-based estimates could occasionally be much more
accurate. E.g., where 2000 blocks—but not 2000 tracts—nest exactly within 2010 tracts, only the tract-
based counts require estimation; the block-based counts are exact. We leave to future research the

assessment of these different approaches for counts (and rates) other than total population.
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Notes

! The initial 65 tables cover: Total Population and Persons by Sex, by Age, by Race, by Hispanic or Latino Origin, by
Household and Group Quarters Type, by Relationship to Householder, and by Housing Tenure (including some
cross-tabulations of these subjects); Total Households and Households by Type and Size; Total Families, Persons in
Families, and Families by Type and Presence and Age of Children; and Total Housing Units and Housing Units by
Occupancy and Vacancy Status, by Tenure, and by Race of Householder. Follow-up releases will continue to
broaden the subject coverage.

2 |t appears that Geolytics employed road-based interpolation of block data only when producing its original
estimates for 2000 census units. Geolytics’ newer estimates for 2010 census tracts are considerably less accurate
than either LTDB’s or NHGIS’s block-based estimates (Logan, Stults, & Xu, 2016).

3 For example, if we used total household counts to guide interpolation of population in households but used total

population counts to guide interpolation of other population groups, then in some cases, due to disproportionate
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changes in household and population distributions between censuses, an area’s estimated count of population in
households could exceed its estimated total population. A more sophisticated model might impose constraints to
prevent such outcomes, but that is beyond the scope of the present work.

4 Our residential road classes are $1200: secondary road; S1400: local neighborhood road, rural road, city street;
$1640: service drive; S1730: alley; S1740: private road for service vehicles; S1750: internal U.S. Census Bureau use;
and S1780: parking lot road. We identify all other road classes as nonresidential, including primary roads, ramps,
trails, and stairways. We also omit any segments classified as bridges, tunnels, or fords.

5 Our transportation-use buffer widths are 60 feet for primary roads (51100), 45 feet for secondary roads (S1200),
30 feet for most other roads (51400, S1630, S1640, S1780, S2000) and for railroads and transit lines (R1011, R1051,
R1052), and 15 feet for trails, alleys, private service roads, and “internal use” roads (all other “S” classes).

6 Among the 352,082 blocks of interest, there are 24,432 blocks (6.9%) involved in “duplicate pairs,” where two
blocks of interest are each nearest the other. In order to maintain exactly one observation for each block of
interest, we include each duplicate pair as a unique observation, even though the measures of error used here are
identical for each block in a pair. A sensitivity analysis, wherein one of each of the duplicate pairs was omitted,
yielded results very similar to those produced when all duplicate pairs were included, with no model coefficient or
error summary statistic differing by more than a few percentage points.

7 A comparison of block boundaries with satellite imagery reveals that in 5 of these 7 cases where Hybrid-VW’s
error is much larger than AW'’s, the block pair consists of a large block and a small block where the Census
apparently allocated a large prison population incorrectly to the large block in 2000 and correctly to the small block
in 2010. AW thus “outperforms” Hybrid-VW in these cases only because Hybrid-VW assumes that the 2000
distribution resembles the 2010 distribution, which agrees with satellite imagery if not with official census counts.
The other 2 cases of very poor Hybrid-VW estimates are for 2 heavily populated neighboring blocks in Fort
Pendleton, California, where it appears there was a large shift in population between 2000 and 2010, possibly due
to real relocations of military personnel or perhaps, as in the other 5 cases, due to data misallocations in one year

or the other.
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